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Executive Summary 
 
E1. Background 

 
The adoption of Assembly Bill 617 (AB617) established collaborative programs to reduce 
community exposure to air pollutants in neighborhoods most impacted by air pollution. Air 
District staff have been working closely with the California Air Resources Board (ARB), other 
local air districts, community groups, community members, environmental organizations, 
regulated industries, and other key stakeholders to reduce harmful air pollutants in Bay Area 
communities. 
 
The purpose of this data analysis and regional modeling effort is to support the District’s AB617 
activities by assessing pollutant formation, quantifying the relative contribution of emission 
sources to ambient pollution levels, and assessing population exposures and the benefits of 
emission controls in impacted communities around the Bay Area. Our initial assessments focus 
on fine particulate matter (PM2.5) concentrations in West Oakland, and follow-up analyses will 
include air toxics evaluations in West Oakland and expansion of our technical assessments to 
other communities. 
 
For the PM2.5 analyses, we evaluated ambient meteorological and air quality data, and applied 
the U.S. EPA’s Community Multi-Scale Air Quality (CMAQ) model to simulate pollutant 
concentrations at a 1-km horizontal resolution over the entire Bay Area for 2016. Then we 
repeated the simulation with West Oakland’s anthropogenic emissions removed from the 
modeling inventory, leaving all other model input parameters unchanged. We calculated annual 
average PM2.5 concentrations using the output of each simulation. The first simulation provided 
the annual average PM2.5 concentrations for 2016 over the entire Bay Area, which will be used 
for PM2.5 exposure analyses and health impacts assessments. The second simulation provided 
an estimate of background PM2.5 levels in West Oakland (i.e., the PM2.5 concentrations that 
would exist in the absence of local West Oakland sources). Background PM2.5 concentrations 
will then be combined with local-scale modeling of West Oakland sources using the AERMOD 
dispersion model to provide a complete picture of PM2.5 levels in the community and the 
relative contribution of different emission sources to those levels. 
 

E2. Major Findings 

 
E2.1 Regional PM2.5 Concentrations 
 
The CMAQ model generally captured the observed PM2.5 pattern within the 1-km domain 
(Figure E1). High concentrations in both simulations and observations are evident in the 
northern San Joaquin Valley, along the I-580 and I-880 corridors from Richmond to the Oakland 
Airport, along the I-101 corridor near Redwood City, and in the San Jose metropolitan area. In 
the Sacramento area, the model shows overestimation biases and PM2.5 concentrations do not 
compare as well to observations as in the Bay Area. For Sacramento and other counties outside 
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the Bay Area, we relied on the ARB’s emission inventories, and further evaluation of these data 
may be warranted. The model also shows high concentrations along the I-880 corridor from 
Oakland Airport to San Jose and along the Delta from Antioch to Brentwood, although 
observations are unavailable in these areas. 
 

 
Figure E1: Spatial distribution of simulated and observed annual average PM2.5 concentrations within the 
1-km modeling domain. 

 
Site by site comparisons between the simulations and observations (Figure E2) show that at 
most Bay Area sites (including the West Oakland Air Monitoring Station), the simulated annual 
average PM2.5 concentrations are within ±1.0 µg/m3 of observations. At a few sites (Concord, 
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Oakland and Gilroy), the annual average PM2.5 concentrations were overestimated, and at one 
site (Napa), the annual average PM2.5 concentration was underestimated by as much as 2.1 
µg/m3. Causes of these over and underestimations are under investigation. 
 

 

 
Figure E2: Annual mean observed vs. modeled PM2.5 concentrations at monitoring sites within the 1-km 
modeling domain. The number of valid observations is shown in parentheses for each site. 

 
E2.2 Estimating Background PM2.5 in West Oakland 

 
Figure E3 shows the annual average PM2.5 concentrations for the base case within the West 
Oakland local-scale modeling domain that will be used for AERMOD. The highest and lowest 
annual average PM2.5 concentrations are 9.3 µg/m3 and 7.1 µg/m3, respectively. A 
concentration gradient is evident within the domain. Cells with relatively higher concentrations 
extend along the eastern boundary and northwestern corner of the domain. A concentration 
gradient is also evident in the West Oakland community, an area within the red border in the 
figure. The eastern half of the community has slightly higher concentrations than the western 
half.  
 
The spatial distribution of the annual average PM2.5 concentrations is similar to the spatial 
distribution of West Oakland’s emissions (Figure E4). The Chinatown area in the southeastern 
corner of the West Oakland local-scale domain has the highest emissions and concentrations. 
The cell along the southern boundary with the area’s lowest concentration (7.1 µg/m3) also has 
the lowest emissions (1.4 lbs/day). 
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Figure E3: Spatial distribution of the simulated annual average PM2.5 concentrations in the West Oakland 
modeling domain. 
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Figure E4: Spatial distribution of annual average PM2.5 emissions in West Oakland. 

 
Figure E5 shows the annual average PM2.5 concentrations for the control case, i.e., a simulation 
without West Oakland’s anthropogenic emissions. Compared to Figure E3, the spatial gradient  
in the annual average concentrations decreased significantly in the absence of West Oakland 
emissions across the local-scale domain. The location of the maximum annual average PM2.5 
concentrations has shifted from Chinatown to near the Bay Bridge, suggesting the influence of 
transport from the northwest corner of the domain. 
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Figure E5: Spatial distribution of the simulated PM2.5 concentrations without West Oakland’s 
anthropogenic emissions. 

 
Figure E6 shows the difference between the base and control cases. Based on the figure, the 
Chinatown area would benefit the most (2.5 µg/m3) from zeroing out all anthropogenic 
emissions in the West Oakland local-scale domain. The West Oakland community (within the 
red border) would benefit by PM2.5 reductions ranging from 0.8 µg/m3 to 1.7 µg/m3. The 
southwest corner of the modeling domain would be the least benefitted area, with a reduction 
of about 0.5 µg/m3.  
 
Note that these PM2.5 concentrations and reductions represent the average value across a 1x1 
km grid cell. Higher concentrations and reductions are possible at the sub-grid cell level, and 
these finer-scale gradients will be investigated with the local-scale AERMOD modeling. 
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Figure E6: Difference between the simulated annual average base and control case PM2.5 
concentrations.  

 

E3. Discussion 
 
West Oakland is a unique area in terms of its geographic location, emissions, meteorology and 
air quality. In the West Oakland local-scale domain, annual average PM2.5 emissions are 0.35 
tons per day (tpd), about 1% of the Bay Area total. Onroad and nonroad mobile sources 
account for 66% of total PM2.5 emissions. Area sources account for 24% of total PM2.5 
emissions, a significantly smaller percentage compared to the Bay Area total PM2.5 emissions 
(Figure E7). 

 

West Oakland is also impacted by pollutant transport from outside sources for all seasons. 
During spring, summer and fall, prevailing winds from the west, northwest and, to a lesser 
degree, from the southwest transport pollutants from downtown San Francisco, the San 
Francisco Peninsula, and shipping emissions from the Pacific Ocean and the Bay. During winter, 
occasional easterly airflow transports polluted air from the Central Valley through the Delta. 
West Oakland is also open for sea salt intrusion, which mostly occurs during spring, and the 
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transport of wildfire emissions from the Sierras, other northern California locations and state of 
Oregon during the wildfire season.  Transport to West Oakland from southern California, 
neighboring counties and intercontinental transport are also possible.1 

 

  

Figure E7: PM2.5 emissions by source sector for the District (left) and West Oakland (right). 

 
February, September and December usually exhibit the highest PM2.5 concentrations in West 
Oakland (Figure E8). PM is elevated in February because of the contribution of wood burning 
emissions, secondary PM formation and near stagnant atmospheric conditions. Elevated PM in 
September is mainly influenced by wildfire emissions. In December, PM levels are significantly 
influenced by wood burning and cooking, which generally increases during the holidays, and 
relatively calm and foggy atmospheric conditions. 
 
The remaining months exhibit PM levels around 8 µg/m3, except July, August and October. The 
strong afternoon seabreeze in July and August lowers concentrations through atmospheric 
mixing, while October is a month with relatively low wind speeds and highly variable wind 
directions. The usual transport from nearby sources are not dominant during this month. 
 
The CMAQ model is generally able to replicate the month-to-month variation in observed PM2.5 
concentrations in West Oakland (Figure E8). The model slightly overestimates PM during winter 
months and underestimates PM during summer months, a pattern that is typical of the CMAQ 
modeling system. The somewhat significant underestimation in September is likely due to lack 
of wildfire emissions in the CMAQ simulations. 
 
  
 

 
1 Note that this analysis did not seek to quantify the impact of various sources of transported pollution on West 
Oakland. Rather, to be consistent with AB617 goals, the focus was on the impact of local emissions. 
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Figure E8: Monthly average simulated and observed PM2.5 concentrations in West Oakland. 
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Fine Particulate Matter Data Analysis and Regional Modeling 
in the San Francisco Bay Area to Support AB617 

 

 
1. Introduction 
 
The adoption of Assembly Bill 617 (AB617) established collaborative programs to reduce 
community exposure to air pollutants in neighborhoods most impacted by air pollution. Air 
District staff have been working closely with the California Air Resources Board (ARB), other 
local air districts, community groups, community members, environmental organizations, 
regulated industries, and other key stakeholders to reduce harmful air pollutants in Bay Area 
communities. 
 
The purpose of this data analysis and regional modeling effort is to support the District’s AB617 
activities by assessing pollutant formation, quantifying the relative contribution of emission 
sources to ambient pollution levels, and assessing population exposures and the benefits of 
emission controls in impacted communities around the Bay Area. Our initial assessments focus 
on fine particulate matter (PM2.5) concentrations in West Oakland, and follow-up analyses will 
include air toxics evaluations in West Oakland and expansion of our technical assessments to 
other communities. 
 
For the PM2.5 analyses, we evaluated ambient meteorological and air quality data, and applied 
the U.S. EPA’s Community Multi-Scale Air Quality (CMAQ) model to simulate pollutant 
concentrations at a 1-km horizontal resolution over the entire Bay Area for 2016 (Figure 1.1). 
Then we repeated the simulation with West Oakland’s anthropogenic emissions removed from 
the modeling inventory, leaving all other model input parameters unchanged. We calculated 
annual average PM2.5 concentrations using the output of each simulation. The first simulation 
provided the annual average PM2.5 concentrations for 2016 over the entire Bay Area, which will 
be used for PM2.5 exposure analyses and health impacts assessments. The second simulation 
provided an estimate of background PM2.5 levels in West Oakland (i.e., the PM2.5 concentrations 
that would exist in the absence of local West Oakland sources). 
 
Background PM2.5 concentrations will be combined with local-scale modeling of West Oakland 
sources using the AERMOD dispersion model to provide a complete picture of PM2.5 levels in 
the community and the relative contribution of different emission sources to those levels. 
Figure 1.2 shows the AERMOD modeling domain for West Oakland. The area outlined in blue 
represents the “source domain,” and all significant emissions sources in that area will be 
modeled in the AERMOD simulations. The red hatched area represents the “receptor domain,” 
or the area for which pollutant concentrations will be calculated by AERMOD. 
 
The application of the CMAQ model involves the preparation of meteorological and emissions 
inputs, model runs, analysis of simulated pollutant concentrations, and the evaluation of model 
performance via comparison between simulated and observed pollutant concentrations. A 
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simulation year of 2016 was selected because (1) this is a recent year that is likely to be 
representative of current conditions in West Oakland and other communities; and (2) special 
measurement studies that took place in 2016 provide additional ambient data to support 
evaluations of model performance. 
 
District staff have been applying and evaluating the CMAQ model in the Bay Area over the last 
several years, along with the Weather Research and Forecasting (WRF) model, which provides 
meteorological inputs for CMAQ. Findings from previous modeling work are documented in a 
District report on PM2.5 data analysis and modeling (Tanrikulu et al., 2009) and in the District’s 
2017 Clean Air Plan (BAAQMD, 2017). Both the CMAQ and WRF models were tested and 
evaluated for many cases in the Bay Area and their performance has been iteratively improved. 
The 2016 simulations used the best-performing configuration of the model. The 2016 emissions 
inputs have been updated to reflect ARB’s most recent estimates and have been evaluated to 
the extent possible. 
 

 
Figure 1.1: The regional 1-km modeling domain used for CMAQ simulations. 
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Figure 1.2: The West Oakland AERMOD modeling domain. The area outlined in blue represents the 
AERMOD source domain, and the red hatched area represents the AERMOD receptor domain. 

 
 
1.1 PM2.5 and Its Health Impacts 
 
PM2.5 is a complex mixture of suspended particles and liquid droplets in the atmosphere that 

have an aerodynamic diameter of 2.5 microns (µm) or less. An individual particle typically 

begins as a core or nucleus of carbonaceous material, often containing trace metals. These 

primary (directly emitted) particles usually originate from the incomplete combustion of fossil 

fuels or biomass. Layers of organic and inorganic compounds then deposit onto a particle, 

causing it to grow in size. These layers are largely comprised of secondary material that is not 

emitted directly. Secondary PM instead forms from chemical reactions of precursor gases 

released from combustion, agricultural activities, household activities, industrial sources, 

vegetation, and other sources. As a particle grows larger, gravity eventually causes it to be 

deposited onto a surface. Naturally emitted dust particles generally have diameters too large to 

be classified as PM2.5. 

 
Major human health outcomes resulting from PM2.5 exposure include: aggravation of asthma, 
bronchitis, and other respiratory problems, leading to increased hospital admissions; 
cardiovascular symptoms, including chronic hardening of arteries and acute triggering of heart 
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attacks; and decreased life expectancy, potentially on the order of years. Smaller particles have 
increasingly more severe impacts on human health as compared to larger particles. This occurs 
in part because smaller particles can penetrate more deeply into the human body. For the Bay 
Area, public health impacts from PM2.5 may well exceed the combined impacts of all other 
currently regulated air pollutants. 
 
District staff have previously evaluated the health and monetary impacts of PM2.5 
concentrations in the Bay Area for 2010. Findings of this evaluation are documented in a report 
by Tanrikulu, et al. (2011). 
 
1.2 Formation of PM2.5 in the Bay Area 
 

In the Bay Area, PM2.5 concentrations can build up during winter months (December, January 

and February) under stable atmospheric conditions that trap pollutants near the ground. 

Winters with frequent stagnant periods tend to have a higher number of days with elevated 

PM2.5 than winters with more periods of windy and stormy conditions. Consecutive stagnant, 

clear winter days are typically required for PM2.5 episodes to develop. PM2.5 episodes are 

regional in nature and impact most Bay Area locations. 

 

The Chemical Mass Balance (CMB) model was previously applied for PM2.5 source 

apportionment using specialized measurements mostly obtained during the years 1999-2014. 

CMB is a statistical receptor model that uses speciated PM2.5 measurements to estimate the 

contribution of individual source categories to observed PM2.5 levels. CMB analyses for the Bay 

Area showed that primary combustion sources (both fossil fuels and biomass) were the largest 

PM2.5 contributors in all seasons. The biomass combustion contribution to peak PM2.5 levels was 

about 2-4 times higher during winter than for other seasons. Secondary PM2.5 levels were 

mostly elevated during the winter months, with ammonium nitrate being the key component of 

wintertime secondary PM2.5. This semi-volatile PM2.5 component is stable in its solid form 

during the cooler winter months. Secondary ammonium sulfate PM2.5 levels were generally low 

(< 1-2 g/m3) but non-negligible. Sea salt, geological dust, and tire and brake wear contributed 

minimally to PM2.5 concentrations (Tanrikulu et al., 2009). 

 

Meteorological cluster analysis, a data mining technique, was implemented to determine how 

weather patterns impact PM2.5 levels. Clustering was applied to measurements from every 

winter day across more than 10 years. This method provided a robust representation of how 

prevailing weather conditions affected the development of PM2.5 episodes. Such episodes 

generally developed under: stable atmospheric conditions inhibiting vertical dispersion; clear 

and sunny skies favoring enhanced secondary PM2.5 formation; and pronounced overnight 

drainage (downslope) flows off the Central Valley rims, causing low-level air in the Central 

Valley to empty through the Delta and into the Bay Area along its eastern boundary. 

Atmospheric transitions of aloft weather systems profoundly influenced the surface winds that 

determine PM2.5 levels. Surface conditions stagnated whenever an upper-level high pressure 
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system moved over Central California. Persisting high pressure conditions allowed PM2.5 

buildup, and Bay Area 24-hour elevated PM2.5 generally occurred after 2-4 days. 

 

A refined cluster analysis further characterized the upwind Central Valley conditions during Bay 

Area episodes. Two distinct inter-regional air flow patterns were associated with different types 

of Bay Area episodes. Most elevated PM days were associated with winds from the Sacramento 

Valley to the northeast entering the Bay Area through the Delta. Peak PM2.5 levels typically 

occurred along the Delta and at San Jose for this type of episode. A minority of elevated PM 

days were associated with winds from the San Joaquin Valley from the southeast entering the 

Bay Area through the Delta. Peak PM2.5 levels typically occurred along the Delta and in the East 

Bay (at Livermore, Concord, Vallejo or San Rafael, and to a lesser degree at Oakland and San 

Francisco) for this type of episode. The remaining relatively moderate episodes could not be 

associated with any distinct inter-regional transport pattern linking the Bay Area and 

surrounding air basins. 
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2. Observations and Data Analysis 

 

2.1 Ambient Measurements 

 

Both meteorological and air quality data have been continuously collected in the Bay Area and 

surrounding regions for many years. In 2016, there were twenty-six PM monitoring stations 

within the 1-km modeling domain - sixteen in the Bay Area and ten outside the region. Table 

2.1 lists PM monitoring stations used in this study with their annual and quarterly average PM2.5 

values. Figure 2.1 shows the spatial distribution of monitored annual average PM2.5 

concentrations for 2016. A complete list of monitoring stations, types of measurements, and 

the purpose of their use in this study is provided in Appendix A. The air quality monitoring 

network plan published by BAAQMD (Knoderer et al., 2017) provides additional details on the 

District’s monitoring network. 

 

All ambient data used in this study were subjected to quality assurance checks and validated 

prior to being used. These data were used for the development of a conceptual model of PM 

formation in the region, establishment of relationships among emissions, meteorology and air 

quality, evaluation of models, and four-dimensional data assimilation (FDDA), in which 

meteorological observations are used by the meteorological model to “nudge” simulations 

toward observations. 

 

Hourly average data are used for most analyses and model evaluation, but monthly, quarterly 

or annual averages are presented here for brevity. 

 

2.2 Data Analysis 

 

In 2016, the annual average PM2.5 concentrations (Table 2.1) at two Bay Area air monitoring 

stations (Sebastopol and Gilroy) were between 5 µg/m3 and 6 µg/m3. These two sites captured 

the lowest PM2.5 levels in the Bay Area. At three other air monitoring stations (Concord, 

Oakland and San Rafael), PM2.5 concentrations were between 6 µg/m3 and 7 µg/m3, and at four 

other stations (Berkeley Aquatic Park, Livermore, San Francisco and Vallejo), they were 

between 7 µg/m3 and 8 µg/m3. At the remaining seven stations (Napa, San Pablo, Laney 

College, Oakland West, Redwood City, San Jose - Jackson and San Jose - Knox Avenue), PM2.5 

levels were above 8 µg/m3. San Jose - Knox Avenue had the highest Bay Area annual average 

PM2.5 concentration (9.2 µg/m3). 

 

Outside of Napa, the stations with annual average PM2.5 concentrations above 8 µg/m3 extend 

from the north Bay to the south Bay. Previous analyses showed that PM2.5 levels at these 

locations were influenced by local sources and the transport of pollutants from the Central 

Valley. Elevated concentrations at Napa are mostly due to local residential wood burning and 

the transport of PM from both residential wood burning and wildfire emissions. 
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While PM2.5 levels at several Bay Area stations, such as Laney College, West Oakland and 

Livermore, showed little change from one quarter to another, another set of stations (including 

Napa, Vallejo and San Francisco) had significant differences between quarters (Table 2.1). These 

stations are impacted by transport and seasonal changes in meteorology and/or emissions, 

such as wood burning. 

 
Table 2.1: PM stations in the 1-km modeling domain with their annual and quarterly average PM2.5 

values. 

Station Name PM2.5 Averages (µg/m3) for 2016 

Stations in the Bay Area ANNUAL QTR_01 QTR_02 QTR_03 QTR_04 

Berkeley Aquatic Park 7.2 --a -- a 7.7 6.6 

Concord 6.2 6.0 4.3 4.6 9.4 

Gilroy 5.7 5.9 6.1 6.8 4.1 

Laney College 8.8 8.9 9.4 8.7 8.1 

Livermore 7.6 7.4 7.2 8.4 7.3 

Napa 8.9 6.5 7.2 10.4 11.1 

Oakland 6.2 5.2 5.9 6.4 7.2 

Oakland West 8.7 9.6 8.9 7.6 8.6 

Redwood City 8.7 6.8 10.3 10.6 6.7 

San Francisco 7.8 8.5 8.1 5.9 8.4 

San Jose - Jackson 8.3 8.0 8.0 8.8 8.4 

San Jose - Knox Avenue 9.2 9.0 8.6 9.9 9.2 

San Pablo 8.1 7.6 8.9 7.8 8.2 

San Rafael 6.6 7.0 6.1 5.9 7.1 

Sebastopol 5.1 4.9 4.6 4.0 6.5 

Vallejo 7.6 8.4 5.6 6.0 10.2 

Stations outside the Bay Area      

Manteca 9.9 10.8 7.5 8.8 12.3 

San Lorenzo Valley Middle School 5.3 5.4 5.2 4.7 5.8 

Roseville - N Sunrise Ave 6.8 6.7 5.7 6.7 8.3 

Sacramento Health Department - Stockton 
Blvd. 

6.9 7.8 5.7 6.6 8.3 

Sacramento - 1309 T Street 7.6 7.2 5.6 7.1 10.9 

Sacramento - Bercut Drive -- a -- a -- a -- a 14.6 

Sacramento - Del Paso Manor 8.7 8.6 6.1 7.2 13.2 

Santa Cruz 5.4 5.8 5.9 5.3 4.5 

Stockton - Hazelton 11.8 13.9 8.2 10.0 15.2 

Woodland - Gibson Road 6.3 5.2 5.4 8.1 6.9 
aData missing or invalidated. 
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Figure 2.1: Spatial distribution of observed annual average PM2.5 concentrations for 2016 within the 1-

km modeling domain. 
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3. Modeling 
 
3.1 Emissions Inventory Preparation 
 
The 2016 modeling emissions inventory includes estimates for area sources,2 point sources, 
onroad mobile sources, nonroad mobile sources, and biogenic sources. The inventory was 
assembled from a variety of data sources, including the District’s in-house emissions estimates, 
emissions data from ARB, and outputs from ARB’s EMFAC2017 model (see Table 3.1). ARB 
emissions data were used for all anthropogenic sources in non-BAAQMD counties with the 
exception of onroad mobile sources. County- and facility-level ARB emissions data for the entire 
state of California were downloaded from ARB’s FTP site in June 2018. These data were in 
SMOKE-ready format and were consistent with the current version of ARB’s online repository of 
emissions inventory data that was developed to support the preparation of ozone State 
Implementation Plans (SIPs) for non-attainment areas in California. At the time of this work, the 
latest version of ARB’s SIP inventory was version 1.05, which was prepared for a base year of 
2012 and projected to various future years, including 2016.3 
 
For area sources, ARB’s county-level emissions estimates for residential wood combustion in 
BAAQMD counties were adjusted to account for the impact of the District’s winter Spare the Air 
program, which prohibits wood burning when air quality is forecast to be unhealthy. This 
adjustment was based on survey-based wood combustion emissions estimates developed by 
District staff, comparisons with wood combustion emissions estimates for other air districts, 
and discussions with ARB staff. Additional details in residential wood combustion emissions are 
provided in Appendix B. 
 
For onroad mobile sources, ARB’s EMFAC2017 model was run for the entire state of California 
for each month in 2016 to produce county-level, month-specific emissions estimates. 
EMFAC2017 reports emissions by vehicle type and emission mode (e.g., idling, running exhaust, 
brake wear, tire wear). EMFAC2017 outputs were converted to SMOKE-ready format using a 
Perl script developed by BAAQMD staff. 
 
For point sources, ARB emissions estimates for BAAQMD counties were replaced by detailed, 
in-house data prepared in California Emission Inventory Development and Reporting System 
(CEIDARS) format. These point source emissions data were representative of calendar year 
2012 and were projected to 2016 using industry-specific growth factors from ARB’s California 
Emissions Projection Analysis Model (CEPAM). The CEIDARS data were converted to SMOKE-
ready format using a Perl script developed by BAAQMD staff. 
 
Biogenic emissions estimates were prepared using EPA’s Biogenic Emission Inventory System 
(BEIS), version 3.61, which estimates emissions from vegetation and soil using land use data; 

 
2 Area sources are stationary sources such as dry cleaners that are too small or numerous to treat as individual 

point sources. 
3 See http://www.arb.ca.gov/app/emsinv/2016ozsip/2016ozsip/. 

http://www.arb.ca.gov/app/emsinv/2016ozsip/2016ozsip/)
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vegetation-specific emission rates for isoprene and other species; and gridded, hourly 
meteorological data from the WRF model. 
 
3.1.1 SMOKE Processing 
 
Emissions inventory data assembled from the sources described above were processed through 
version 4.5 of the SMOKE emissions processor to develop CMAQ-ready emissions inputs for 
each day of 2016. SMOKE uses the processing steps described below to convert “raw” 
emissions inputs to the spatial, temporal, and chemical resolution required by CMAQ or an 
equivalent air quality model. 
 
Table 3.1: Summary of data sources used to develop the 2016 modeling inventories. 

Region Source Sector Data Source 

BAAQMD Countiesa Area ARB county-level emissions estimates, with 
adjustments made to residential wood combustion 
emissions 

Nonroad ARB county-level emissions estimates 

Onroad County-level, month-specific EMFAC2017 outputs 

Point In-house CEIDARS data 

Biogenic Hourly outputs from EPA’s BEISv3.61 model 

Non-BAAQMD Counties Area ARB county-level emissions estimates 

Nonroad ARB county-level emissions estimates 

Onroad County-level, month-specific EMFAC2017 outputs 

Point ARB facility-level emissions estimates 

Biogenic Hourly outputs from EPA’s BEISv3.61 model 
aAlameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, and Santa Clara counties, plus the southern 
portion of Sonoma County and the western portion of Solano County. 

 
Spatial allocation 
SMOKE assigns county- or facility-level emissions to individual grid cells in the modeling 
domain. For point sources, emissions are assigned to grid cells based on the location 
coordinates (i.e., latitude and longitude) of emission release points. For county-level area, 
nonroad, or onroad emissions estimates, SMOKE allocates emissions to grid cells using spatial 
allocation factors developed from “surrogate” geospatial data sets such as land use or 
socioeconomic data. Geospatial data sets used to develop the surrogates used in SMOKE 
include land use data from the Association of Bay Area Governments (ABAG) (Reid, 2008). For 
counties in the District’s jurisdiction, gridded surrogate data were available at 1-km grid 
resolution. However, for counties outside the District, only 4-km surrogate data were available, 
so these data were parsed to create a set of pseudo 1-km surrogates. 
 
Temporal allocation 
SMOKE assigns annualized or average day emissions to the specific dates and hours being 
modeled using temporal profiles that reflect source-specific activity patterns by month, day of 
week, and hour of day. Temporal profiles from ARB’s CEIDARS database were used in SMOKE to 
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temporally allocate area, point, and nonroad mobile source emissions. For onroad mobile 
sources, temporal profiles that ARB developed from its California Air Resources Board Vehicle 
Activity Database (CalVAD) were used.4 
 
Chemical speciation 
SMOKE disaggregates total organic gas (TOG) and PM2.5 emissions into a series of model species 
that CMAQ uses to represent atmospheric chemistry. For the 2016 CMAQ modeling, speciation 
profiles developed for the SAPRC07 chemical mechanism were applied to TOG emissions from 
all sources, and profiles developed for the AERO6 aerosol module were applied to PM2.5 
emissions from all sources. 
 
The SMOKE system includes an implementation of EPA’s Biogenic Emission Inventory System 
(BEIS), version 3.61, which estimates biogenic emissions using land use data; vegetation specific 
emission rates for isoprene and other species; and gridded, hourly meteorological data from 
the WRF model. BEISv3.61 was run within SMOKE to prepare 2016 biogenic emissions estimates 
for the 1-km modeling domain. 
 
Once SMOKE runs were completed, a number of quality assurance checks were performed on 
the resulting emissions data. First, plots of gridded emissions were generated to examine the 
spatial distribution of emissions. Similarly, diurnal plots were generated to examine hourly 
variations in emissions by source sector and to ensure that the patterns make sense. In 
addition, SMOKE’s SMKREPORT utility was used to generate tabular summaries of emissions by 
pollutant, county, grid cell, hour, and source category. This information was used in a variety of 
ways, including: 

• Comparing emissions before and after key processing steps to ensure that any changes 
in the mass of emissions make sense. For example, for counties that only partially lie 
within the modeling domain, total emissions should decrease after the gridding step. 

• Sorting emissions by source category code (SCC) or facility ID to identify key contributors 
to total emissions for each pollutant and to identify potential outliers. 

• Summarizing emissions by pollutant and county to ensure that geographic distributions 
make sense (e.g., SO2 emissions are highest in Contra Costa County where refineries are 
concentrated). 

• Extracting emissions for grid cells in the West Oakland AERMOD modeling domain to 
identify key sources and compare emissions by source sector with the District as a 
whole. 

 
These checks identified several issues, including PM2.5 hotspots at two landfills in eastern 
Alameda County. Our modelers worked with staff from the District’s Emissions & Community 
Exposure Assessment section to correct the emissions from these and other point sources. 

 
4 The CalVAD database fuses available data sources such as Caltrans Weigh-in-Motion (WIM) data and Highway 

Performance Monitoring System (HPMS) data to produce a best estimate of vehicle activity by class. 
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3.1.2 Emissions Summaries 
 
This subsection provides emissions density plots and summary tables for PM2.5, and similar 
information for additional pollutants can be found in Appendix B. Figure 3.1 shows annual 
average PM2.5 emissions for the 1-km modeling domain. Table 3.2 summarizes the annual 
average PM2.5 emissions by county and source sector, as reported by the SMOKE emissions 
model. Within the District’s jurisdiction, annual average PM2.5 emissions total 33.7 tons per day 
(tpd). The area source sector accounts for about half of this total (17 tpd), and individual source 
categories that are key contributors to total PM2.5 emissions include residential wood 
combustion, fugitive dust from roadways and construction sites, and commercial cooking. 
 

  
Figure 3.1: Spatial distribution of annual average PM2.5 emissions for the 1-km modeling domain. 
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Table 3.2: Summary of 2016 PM2.5 anthropogenic emissions (tpd) by geographic area 
and source sector. 

Geographic Area Area Nonroad Onroad Point Total 

Alameda 3.0 0.5 1.4 1.3 6.2 

Contra Costa 3.1 0.5 0.8 4.2 8.7 

Marin 0.8 0.2 0.2 0.1 1.3 

Napa 0.8 0.2 0.1 0.1 1.2 

San Francisco 1.2 1.0 0.3 0.1 2.7 

San Mateo 1.4 0.5 0.5 0.4 2.7 

Santa Clara 3.9 0.6 1.3 0.7 6.5 

Solanoa 1.3 0.1 0.3 0.5 2.1 

Sonomaa 1.4 0.3 0.3 0.2 2.2 

BAAQMD Subtotal 17.0 3.9 5.2 7.5 33.7 

Non-BAAQMD Counties 23.7 2.2 2.9 2.4 31.2 

Domain Total 40.7 6.1 8.0 9.9 64.9 
aEmissions totals for Solano and Sonoma counties only include the portion of those counties in 
BAAQMD’s jurisdiction. 

 
For the West Oakland AERMOD modeling domain, annual average PM2.5 emissions total 0.35 
tpd, or about 1% of the BAAQMD total. Figure 3.2 shows that the distribution of emissions by 
source sector in West Oakland differs from the District as a whole. In West Oakland, onroad and 
nonroad mobile sources account for 66% of total PM2.5 emissions, while the same sources only 
account for 27% of total PM2.5 emissions districtwide. Figure 3.3 shows the spatial distribution 
of PM2.5 emissions across the 1-km grid cells that coincide with the local-scale AERMOD 
modeling domain. 

 

  

Figure 3.2: PM2.5 emissions by source sector for the District (left) and West Oakland (right). 
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Figure 3.3: Spatial distribution of annual average PM2.5 emissions in West Oakland. 
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3.2 Meteorological Modeling 
 
The Weather Research and Forecasting (WRF) Model version 3.8 was used to prepare 
meteorological inputs to CMAQ. Four nested modeling domains were used (Figure 3.4). The 
outer domain covered the entire western United States at 36-km horizontal grid resolution to 
capture synoptic (large-scale) flow features and the impact of these features on local 
meteorology. The second domain covered California and portions of Nevada at 12-km 
horizontal resolution to capture mesoscale (sub-regional) flow features and their impacts on 
local meteorology. The third domain covered Central California at 4-km resolution to capture 
localized air flow features. The 4-km domain included the Bay Area, San Joaquin Valley, and 
Sacramento Valley, as well as portions of the Pacific Ocean and the Sierra Nevada mountains. 
The fourth domain covered the Bay Area and surrounding regions at 1-km resolution. All four 
domains employed 50 vertical layers with thickness increasing with height from the surface to 
the top of the modeling domain (about 18 km). 
 
Meteorological variables are estimated at the layer midpoints in WRF. The thickness of the 
lowest layer nearest the surface was about 25 m. Thus, meteorological variables near the 
surface were estimated for a height of about 12.5 m above ground level. The model 
configuration was tested using available physics options, including: (1) planetary boundary layer 
processes and time-based evolution of mixing heights; (2) choice of input database for WRF; (3) 
four-dimensional data assimilation (FDDA) strategy; (4) horizontal and vertical diffusion; (5) 
advection scheme; and (6) initial and boundary conditions. The final choice of options was the 
one proved to best characterize meteorology in the domain. 
 
WRF was applied for 2016 to estimate parameters required by the air quality model, including 
hourly wind speed and direction, temperature, humidity, cloud cover, rain and solar radiation 
levels. Observations are assimilated into the model during the simulations to minimize the 
difference between simulations and real-world measurements. Two types of nudging methods 
were employed (analysis and observation). The NCEP North America Mesoscale (NAM) 12-km 
analyzed meteorological fields were used for analysis nudging as well as for initializing the 
model. The NCEP ADP Global Surface and Upper Air Observational Weather Data were used for 
observational nudging. A list of these stations for the 1-km domain is given in Appendix A. 
 
The analysis nudging was applied to the 36-km and 12-km domains. Frequency of surface 
analysis nudging was every three hours, while the frequency of 3D analysis nudging was every 
six hours. The 3D analysis nudging of winds was performed over all model layers, but the 3D 
analysis nudging of temperature and humidity was limited to layers above the planetary 
boundary layer. The observation nudging of wind was applied to all four domains every three 
hours. 
 

The WRF model was rigorously evaluated for accuracy. Observations used to evaluate WRF 

were taken from the EPA’s Air Quality System, the BAAQMD meteorological network, and the 

National Climate Data Center. A list of these stations for the 1-km domain is given in 

Appendix A. Hourly and daily time series plots of observed and simulated wind, temperature 
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and humidity were generated at each observation station and compared to each other hour by 

hour and day by day. Simulated hourly areal plots of wind, temperature, humidity, planetary 

boundary layer height, pressure and other fields were generated and quantitatively compared 

against observations where observations were available. 

  

 

Figure 3.4: Nested WRF modeling domains. 

 

These plots were also qualitatively evaluated for known meteorological features of the 

modeling domain, especially at 4-km and 1-km resolutions. These features include slope flows, 

channeled flows, sea breeze and low-level jet. The vertical profile of observed and simulated 

meteorological fields was compared at several upper air meteorological stations, including 

Oakland, Medford, Reno and Las Vegas, and at a temporary station established at Bodega Bay. 

RAMBOLL’s METSTAT program (Emery et al., 2001) was used to statistically evaluate the 

performance of WRF. The statistical metrics used in this evaluation are defined in Appendix C. 

 

The WRF model performed reasonably well in every evaluation category. The estimated bias, 

gross error, root mean square error (RMSE), and index of agreement (IOA) are within 

established criteria for acceptable model performance for every day of 2016. In other words, 
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performance obtained from the Bay Area applications of WRF is similar or slightly better than 

performance obtained from applications elsewhere, available from literature. 

 

Performance statistics were generated for all days of 2016. Samples from ten winter (December 

1-10) and ten summer (July 1-10) days are shown in Table 3.3, while Table 3.4 shows maximum 

and minimum skill scores of WRF for all of 2016. 

 

Simulated and observed wind speed, wind direction, temperature and humidity, for both hourly 

and annual time periods, were compared at each station. Time series comparisons for West 

Oakland, Vallejo and San Jose are shown in Appendix C. These three stations were selected 

because West Oakland is the area of interest for this study. Vallejo is strategically located in the 

Delta to capture air flow between the Bay Area and the Central Valley. San Jose is an important 

sub-region of the Bay Area representing outflows. Good model performance at Vallejo and San 

Jose is critical to simulate representative meteorological features in West Oakland. 

 

The WRF model was also compared against upper air measurements at Oakland, a site 

operated by the National Weather Service with twice daily upper air measurements and at 

Bodega Bay, a temporary site established by the California Baseline Ozone Transport Study with 

daily ozonesonde and meteorological measurements. Simulated winds, temperatures and 

humidity matched these upper air measurements very well. Details can be found in Appendix C.   

 
Table 3.3: Sample (December 1-10 and July 1-10) statistical scores of WRF. 

Parameter  Metric Units 12/01 12/02 12/03 12/04 12/05 12/06 12/07 12/08 12/09 12/10 

Wind Speed Bias (m/s) -0.21 -0.43 -0.21 -0.68 -0.35 -0.38 -0.67 -0.32 -0.35 -0.77 

Wind Speed Gross Error (m/s) 1.28 1.61 1.05 1.08 0.91 1.13 1.16 1.49 0.93 1.33 

Wind Speed RMSE (m/s) 1.68 2.07 1.4 1.5 1.22 1.49 1.48 1.88 1.19 1.7 

Wind Speed  IOA --a 0.78 0.75 0.64 0.67 0.66 0.73 0.71 0.7 0.66 0.79 

Wind Direction  Bias (deg) 2.21 -1.32 -6.78 3.74 4.73 13.09 3.22 5.08 -6.37 6.45 

Wind Direction Gross Error (deg) 32.17 24.42 57.64 45.58 42.43 43.08 32.72 50.97 38.39 22.33 

Temperature Bias (K) 1.26 1.25 2.6 0.85 0.35 1.76 2.08 0.75 -0.31 -0.68 

Temperature Gross Error (K) 32.17 1.72 2.66 1.47 1.18 1.85 2.26 1.64 1.43 0.92 

Temperature RMSE (K) 2.09 2.25 3.2 1.87 1.53 2.41 2.71 2.09 1.82 1.15 

Temperature  IOA -- a 0.93 0.91 0.87 0.94 0.94 0.88 0.82 0.89 0.88 0.87 

Parameter Metric Units 7/01 7/02 7/03 7/04 7/05 7/06 7/07 7/08 7/09 7/10 

Wind Speed Bias (m/s) -0.96 -1.12 -0.96 -1.15 -1.04 -0.95 -1.08 -0.91 -1.27 -0.91 

Wind Speed Gross Error (m/s) 1.35 1.48 1.37 1.53 1.44 1.43 1.51 1.41 1.7 1.44 

Wind Speed RMSE (m/s) 1.81 1.91 1.77 2.02 1.99 1.86 2.01 1.8 2.26 1.88 

Wind Speed IOA -- a 0.71 0.76 0.75 0.71 0.71 0.75 0.71 0.7 0.71 0.74 
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Wind Dir Bias (deg) -0.16 0.36 -3.34 -1.97 -3.95 -1.52 0.97 3.73 3.51 4.82 

Wind Dir Gross Error (deg) 28.1 27.05 24.63 27.85 24.76 23.07 20.44 21.91 21.83 28.44 

Temperature Bias (K) 1.3 1.47 0.24 0.39 1.2 1.09 0.87 0.34 0.06 0.59 

Temperature Gross Error (K) 1.89 1.9 1.21 1.14 1.58 1.36 1.12 1.14 0.87 1.17 

Temperature  RMSE (K) 2.43 2.34 1.56 1.48 1.99 1.69 1.39 1.43 1.09 1.54 

Temperature IOA -- a 0.97 0.96 0.98 0.98 0.96 0.97 0.98 0.98 0.99 0.98 

aThe Index of Agreement (IOA) is a dimensionless quantity. 

 

Table 3.4: Maximum and minimum statistical scores of WRF for 2016. 

Parameter Metric Units Max Min 

Wind Speed Bias (m/s) 1.02 -0.99 

Wind Speed Gross Error (m/s) 2.03 0.57 

Wind Speed RMSE (m/s) 2.5 0.76 

Wind Speed  IOA -- 0.92 0.4 

Wind Direction Bias (deg) 14.84 -12.56 

Wind Direction Gross Error (deg) 81.37 13.5 

Temperature  Bias (K) 2.99 -1.62 

Temperature  Gross Error (K) 3.24 0.72 

Temperature  RMSE (K) 5.22 0.9 

Temperature  IOA -- 0.98 0.47 

 

 
3.3 Air Quality Modeling 
 

Air quality modeling was conducted using the U.S. EPA’s Community Multiscale Air Quality 

(CMAQ) modeling system version 5.2. Two nested domains were used. The outer domain 

coincides with the third domain of the meteorological model and covers the Bay Area, San 

Joaquin Valley, and Sacramento Valley, as well as portions of the Pacific Ocean and the Sierra 

Nevada mountains at 4-km horizontal resolution. The inner domain covers the Bay Area and 

surrounding regions at 1-km horizontal resolution. 

 

Both CMAQ modeling domains had 28 vertical layers. Below 1,500 m, the CMAQ layers match 

the WRF layers, while some upper-level meteorological model layers above 1,500 m were 

collapsed while preparing meteorological inputs for CMAQ to reduce computational time. This 

is a common practice in air quality modeling, as pollutant levels in layers aloft are relatively low 

and do not significantly impact concentrations at the surface. The thickness of CMAQ model 

layers was also increasing with height from the surface to the top of the modeling domain 

(about 18 km). The thickness of the first layer of CMAQ was kept the same as in WRF (about 
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25 m), meaning that pollutant concentrations are estimated at around 12.5 m above the 

surface (the midpoint of the first layer). 

The outer domain provides initial conditions and hourly boundary conditions to the 1-km 

domain. As a result, the inner domain accounts for the contribution of emissions sources 

outside of the Bay Area to Bay Area PM levels. The outer domain was initialized and its 

boundary conditions were updated every six hours using outputs from a global air quality 

model (MOZART), available from the National Center for Atmospheric Research (NCAR). 

 

CMAQ simulates both primary and secondary PM2.5, with secondary PM2.5 formation being 

dependent upon photochemistry. The chemical mechanism used in this simulation was the 

Statewide Air Pollution Research Center version 2007 (SAPRC-07) mechanism. Secondary PM 

formulation was simulated using the Models-3 AE6 aerosol module. 

 

Each month was simulated separately to distribute simulations over 12 computer nodes for 

computational efficiency. Each monthly simulation includes the last three days of the previous 

month as a spin-up period except for January, which includes the last five days of December 

2015. Model outputs from the spin-up periods were not used in analyses. 

 

3.3.1 CMAQ Evaluation 

 

The CMAQ model was rigorously evaluated for accuracy. Observations used to evaluate CMAQ 

were taken from the District’s Data Management System and the EPA’s Air Quality System. 

Hourly and daily time series plots of observed and simulated PM2.5 concentrations were 

generated at each observation station and compared to each other hour by hour and day by 

day. This evaluation also provided an opportunity to identify gaps in measurements and 

outliers. Hourly, daily, monthly, quarterly and annual average spatial plots of PM and precursor 

concentrations were generated for observed and simulated values, and simulated values were 

quantitatively compared against observations where observations were available. 

 

These plots were also qualitatively evaluated for known air quality features that may be 

impacted by meteorology, emissions, chemistry and other environmental parameters. 

Examples include local and regional transport of pollutants, proximity of polluted areas to 

emission sources such as freeways, and the behavior of atmospheric chemistry. 

 

Various statistical metrics were used to evaluate the performance of CMAQ. Standard statistical 

measures used for CMAQ evaluation are described in EPA’s latest modeling guidance (EPA, 

2018) and in Appendix D.  These metrics were applied for daily average simulated PM2.5 

concentrations over quarterly and annual periods. The CMAQ model performed reasonably 

well, meeting the performance goals proposed by Boylan and Russell (2006) and criteria by 

Emery et al. (2017), two well-known references for PM model evaluation. Figure 3.5 shows 

fractional bias, fractional error, normalized mean bias and normalized mean error for quarterly 
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and annual periods. The performance goals (dashed lines) and criteria (solid lines) are also 

shown in the figure as references. 
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Figure 3.5: Quarterly and annual performance statistics for simulated PM2.5 over the 26 air monitoring 

sites within the 1-km modeling domain with performance goals (dashed lines) and criteria (solid lines) 

proposed by Boylan and Russell (2006) and Emery et al. (2017). FB stands for fractional bias, FE 

fractional error, NMB normalized mean bias and NME normalized mean error. 

 

Additional comparisons between simulated and observed PM2.5 are discussed in Section 4 

(Results) and in Appendix D. These comparisons largely focus on three selected Bay Area sites 

(West Oakland, Vallejo and San Jose) that are particularly relevant to West Oakland study. 
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4. Results 

 

Comparison between the annual average simulated and observed PM2.5 concentrations (Figure 

4.1) shows that the CMAQ model generally captured the observed PM2.5 pattern within the 1-

km domain. High concentrations in both simulations and observations are evident in the 

northern San Joaquin Valley, along the I-580 and I-880 corridors from Richmond to the Oakland 

Airport, along the I-101 corridor near Redwood City, and in the San Jose metropolitan area. In 

the Sacramento area, the model shows overestimation biases and PM2.5 concentrations do not 

compare as well to observations as in the Bay Area. For Sacramento and other counties outside 

the Bay Area, we relied on the ARB’s emission inventories, and further evaluation of these data 

may be warranted.  The model also shows high concentrations along the I-880 corridor from 

Oakland Airport to San Jose and along the Delta from Antioch to Brentwood, although 

observations are unavailable in these areas.  

 

Site by site comparisons between the model predictions and observations (Figure 4.2) show 

that at most Bay Area sites, the simulated annual average PM2.5 concentrations are within ±1.0 

µg/m3 of observations. At a few sites (Concord, Oakland and Gilroy), the annual average PM2.5 

concentrations were overestimated, and at one site (Napa), the annual average PM2.5 

concentration was underestimated by as much as 2.1 µg/m3. 

 

Further analyses of model output showed that at sites with overestimated PM2.5, both primary 

and secondary PM2.5 concentrations appear to be overestimated. This suggests that there may 

be multiple causes of overestimation. Primary PM2.5 concentrations can be overestimated due 

to overestimation of emissions, transport, and stability of the atmosphere. Secondary PM2.5 can 

be overestimated due to overestimation of precursor emissions, chemical conversion of the 

precursors to PM, transport of secondary PM2.5 or its precursors, and stability of the 

atmosphere.  

 

Underestimation of PM2.5 at Napa is likely due to an underestimation of wood burning 

emissions or the transport of wildfire emissions to the North Bay. Wildfire emissions are not 

included in the modeling emissions inventory.  

 

Figure 4.3 shows time-series plots of observed and simulated daily PM2.5 concentrations at 

three key Bay Area sites relevant to the West Oakland study: West Oakland, Vallejo and San 

Jose. It is evident from this figure that PM2.5 is generally overestimated during winter months 

and underestimated during summer months. However, on a monthly average basis, the CMAQ 

model is generally able to replicate the month-to-month variation in observed PM2.5 

concentrations in West Oakland (Figure 4.4). The somewhat significant underestimation in 

September is likely due to lack of wildfire emissions in the CMAQ simulations. 

 

During winter months, especially in February, the atmosphere is relatively sunny, calm and cool 

in the Bay Area, ideal conditions for the formation of secondary PM and for allowing 
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ammonium nitrate to remain in particle form. All of these suspected causes of overestimation 

are under further investigation and evaluation. 

 

Wintertime overestimation and summertime underestimation of PM2.5 by the WRF-CMAQ 

couple have also been reported elsewhere, and developers of the modeling system are aware 

of this problem (Appel et al., 2017; Simon et al., 2012). Efforts are underway by the model 

developers and District staff to minimize errors and to improve model performance for both 

winter and summer. 
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Figure 4.1: Spatial distribution of simulated and observed annual average PM2.5 concentrations within 

the 1-km modeling domain. 
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Figure 4.2: Annual mean observed vs. modeled PM2.5 concentrations at monitoring sites within the 1-km 

modeling domain. The annual means are calculated over the days with valid observations. The number 

of valid observations is shown in parentheses for each site. The Berkeley site is missing observations for 

January through June. Two Sacramento sites (Health Department - Stockton Blvd. and 1309 T Street) 

have observations every 3rd day. The Roseville and Woodland sites have observations every 6th day. The 

Sacramento - Bercut Drive site has data only for December, so its annual mean is not shown. 
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(a) Oakland West 

 
(b) Vallejo 

 
(c) San Jose – Knox Avenue 

 

Figure 4.3: Time-series plots of observed vs. modeled daily PM2.5 concentrations at (a) Oakland West, (b) 
Vallejo, and (c) San Jose monitoring sites. 
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Figure 4.4: Monthly average simulated and observed PM2.5 concentrations in West Oakland. 

 

4.1 Estimating Background PM2.5 in West Oakland 

As mentioned in Section 1, we have simulated pollutant concentrations at a 1-km horizontal 
resolution over the entire Bay Area for 2016 (base case). Then we repeated the simulation with 
all anthropogenic emissions removed from the modeling inventory in the West Oakland source 
domain (control case), leaving all other model input parameters unchanged.  
 
Figure 4.5 shows the annual average PM2.5 concentrations for the base case within the West 
Oakland receptor domain. The highest and lowest annual average PM2.5 concentrations are 9.3 
µg/m3 and 7.1 µg/m3, respectively. A concentration gradient is evident within the domain. Cells 
with relatively higher concentrations extend along the eastern boundary and northwestern 
corner of the domain. A concentration gradient is also evident in the West Oakland community, 
an area within the red border in the figure. The eastern half of the community has slightly 
higher concentrations than the western half.  
 
The spatial distribution of the annual average PM2.5 concentrations is similar to the spatial 
distribution of West Oakland’s emissions (Figure 3.3). The Chinatown area in the southeastern 
corner of the West Oakland domain has the highest emissions and concentrations. The cell 
along the southern boundary with the area’s lowest concentration (7.1 µg/m3) also has the 
lowest emissions (1.4 lbs/day). 
 
Figure 4.6 shows the annual average PM2.5 concentrations for the control case, i.e., a simulation 
without West Oakland’s anthropogenic emissions. Compared to Figure 4.5, the spatial gradient 
in the annual average concentrations decreased significantly in the absence of West Oakland 
emissions across the receptor domain. The location of the maximum annual average PM2.5 
concentrations has shifted from Chinatown to near the Bay Bridge, suggesting the influence of 
transport from the northwest corner of the domain. 
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Figure 4.7 shows the difference between the base and control cases. Based on the figure, the 
Chinatown area would benefit the most (2.5 µg/m3) from zeroing out all anthropogenic 
emissions in the West Oakland source domain. The West Oakland community (within the red 
border) would benefit by PM2.5 reductions ranging from 0.8 µg/m3 to 1.7 µg/m3. The southwest 
corner of the receptor domain would be the least benefitted area, with a reduction of about 0.5 
µg/m3.  
 
Note that these PM2.5 concentrations and reductions represent the average value across a 1x1 
km grid cell. Higher concentrations and reductions are possible at the sub-grid cell level, and 
these finer-scale gradients will be investigated with local-scale AERMOD modeling. 
 
Bias in the simulated annual average PM2.5 concentrations for both base and control cases are 
expected to be similar. Since reductions are estimated from the difference between the two 
simulations, the impact of model bias on estimated reductions is expected to be insignificant. 
  

  
Figure 4.5: Spatial distribution of the simulated annual average PM2.5 concentrations in the West 
Oakland receptor domain (base case). 
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Figure 4.6: Spatial distribution of the simulated PM2.5 concentrations without West Oakland’s 
anthropogenic emissions (control case).   
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Figure 4.7: Difference between the simulated annual average base and control case PM2.5 
concentrations. 
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Appendix A – Observational Data 
 
A1. Description of Observations 
 
Table A1 lists all aerometric stations within the 1-km modeling domain from which data were 
used in this study. It also shows data sources, data types, and purpose of the data. Under the 
monitoring location column, the first two subsections list PM2.5 stations within and outside of 
the Bay Area. The subsequent subsections list meteorological measurement stations within and 
outside of the Bay Area, followed by a list of upper air measurement stations. Meteorological 
measurement stations within the Bay Area are further separated based on whether or not they 
are operated by the District. Some stations measure both PM2.5 and meteorology. These 
stations are listed under both the PM2.5 and meteorology measurement sections and identified 
through checkmarks under columns titled “PM” and “Met.” 
 
Hourly PM2.5 and meteorological data were obtained from the District’s Data Management 
System (DMS) in October 2018, and hourly PM2.5 and meteorological data were obtained from 
the U.S. EPA’s Air Quality System (AQS) at around the same time. Hourly meteorological data 
were also obtained from the NCAR/UCAR ADP data archive and twice daily upper air data were 
obtained from NOAA’s National Climatic Data Center.  
 
The ADP and National Climatic Data Center data were used for the four-dimensional data 
assimilation (FDDA) in the WRF model. FDDA is a method to nudge the WRF model results 
towards observations. The WRF model includes a post-processing utility computer program 
that prepares the ADP and NCDC data for FDDA. The utility program also quality assures and 
quality checks both the ADP and National Climatic Data Center data. Meteorological data from 
the other sources listed in Table A1 were not used in FDDA because they do not include 
pressure, which is required for the nudging process. All the observed meteorological data listed 
in the column titled “Met” were used for WRF model validation using a software tool called 
METSTAT. The METSTAT program has a module for applying consistency checks to the data 
being used.  
 
PM2.5 data obtained from DMS and AQS were compared against each other and no differences 
were found. PM2.5 data were used for both data analysis and CMAQ model validation. For 
consistency in data format, only data downloaded from AQS were used for data analysis and 
model validation.  
 
As explained in the main text of this document, time series and spatial plots of simulated and 
observed hourly PM2.5 concentrations were generated and compared against each other. This 
process allowed identification of gaps and outliers in the PM2.5 data. Statistical formulas were 
developed in an Excel spreadsheet to evaluate the observations, such as assessing gaps in 
measurements, calculating daily, monthly, seasonal and annual averages, and assessing high 
and low values.  Statistical formulas were also developed to assess bias, normalized bias and 
root mean square error in simulations by comparing simulated values to observations. 
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Table A1: Description of observations used in this study. 

Monitoring Location Source PM Met (ws, 
wd, t, rh)* 

FDDA Model Validation 

WRF CMAQ 

San Francisco Bay Area PM Stations 

Berkeley Aquatic Park DMS x    x 

Concord DMS x x   x 

Gilroy DMS x    x 

Laney College DMS x    x 

Livermore DMS x x   x 

Napa DMS x x   x 

Oakland DMS x    x 

Oakland West DMS x    x 

Redwood City DMS x    x 

San Francisco DMS x    x 

San Jose - Jackson DMS x    x 

San Jose - Knox Avenue DMS x    x 

San Pablo DMS x    x 

San Rafael DMS x    x 

Sebastopol DMS x    x 

Vallejo DMS x x   x 

       

PM Stations Outside the San Francisco Bay Area 

Manteca AQS x    x 

Roseville - N Sunrise Ave AQS x x   x 

Sacramento Health Department - Stockton 
Blvd. 

AQS x    x 

Sacramento - 1309 T Street AQS x x   x 

Sacramento - Bercut Drive AQS x    x 

Sacramento - Del Paso Manor AQS x x   x 

San Lorenzo Valley Middle School AQS x    x 

Santa Cruz AQS x    x 

Stockton - Hazelton AQS x x   x 

Woodland - Gibson Road AQS x    x 

       

BAAQMD Met Stations 

Bethel Island DMS  x  x  

Chabot DMS  x  x  

Concord DMS x x  x  

Fairfield DMS  x  x  

Ft. Funston DMS  x  x  

Livermore DMS x x  x  

Napa DMS x x  x  

Oakland STP DMS  x  x  

Patterson Pass DMS  x  x  

Pleasanton DMS  x  x  

Pt. San Pablo DMS  x  x  
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Monitoring Location Source PM Met (ws, 
wd, t, rh)* 

FDDA Model Validation 

WRF CMAQ 

Rio Vista DMS  x  x  

San Carlos DMS  x  x  

San Martin DMS  x  x  

San Ramon DMS  x  x  

Sonoma Baylands DMS  x  x  

Vallejo DMS x x  x  

Valley Ford DMS  x  x  

       

Non-BAAQMD Met Stations in the Bay Area 

Berkeley Lab DMS  x  x  

Concord KCCR ADP  x x x  

Hayward KHWD ADP  x x x  

Livermore KLVK ADP  x x x  

Moffett NASA/Mountain View KNUQ ADP  x x x  

Napa KAPC ADP  x x x  

Novato KDVO ADP  x x x  

Oakland KOAK ADP  x x x  

Palo Alto KPAO ADP  x x x  

Petaluma KO69 ADP  x x x  

San Carlos KSQL ADP  x x x  

San Francisco KSFO ADP  x x x  

San Francisco STP DMS  x  x  

San Jose KSJC ADP  x x x  

San Jose/Reid KRHV ADP  x x x  

San Martin KE16 ADP  x x x  

Santa Rosa KSTS ADP  x x x  

Travis AFB KSUU ADP  x x x  

       

Met Stations Outside the Bay Area 

Davis - UCD Campus AQS  x  x  

Davis  KEDU ADP  x x x  

Elk Grove - Bruceville Road AQS  x  x  

Half Moon Bay  KHAF ADP  x x x  

Hollister KCVH ADP  x x x  

 Lincoln KLHM ADP  x x x  

Mather Field KMHR ADP  x x x  

McClellan AFB KMCC ADP  x x x  

Modesto KMOD ADP  x x x  

Roseville - N Sunrise Ave AQS x x  x  

Sacramento - 1309 T Street AQS x x  x  

Sacramento - Del Paso Manor AQS x x  x  

Sacramento KSAC ADP  x x x  

Salinas KSNS ADP  X X x  

Sanford MUNI KSMF ADP  x x x  
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Monitoring Location Source PM Met (ws, 
wd, t, rh)* 

FDDA Model Validation 

WRF CMAQ 

Stockton KSCK ADP  x x x  

Stockton - Hazelton AQS x x  x  

Tracy - Airport AQS  x  x  

Vacaville KVCB ADP  x x x  

Watsonville KWVI ADP  x x x  

       

Upper Air Stations 

Oakland Sounding NCDC  x x x  

*ws=wind speed; wd=wind direction; t=temperature; rh=relative humidity. 

 
A2. Spatial Distribution of Observation Stations 
 
Figure A1 shows spatial distribution of meteorological observation stations in the 1-km 
modeling domain. They are grouped based on whether they are operated by BAAQMD or other 
agencies (non-BAAQMD) and whether they are inside or outside of the District boundaries. 
BAAQMD sites collocated with PM2.5 measurements are also marked. 
 
The spatial distribution of PM2.5 monitoring stations in the 1-km modeling domain is shown in 
Figure A2. These stations are grouped based on whether they are inside or outside of the 
District boundaries. All stations within the District are operated by the District. 
 
Note that both the meteorological and air quality models have nested domains. Meteorological 
and air quality measurements outside of the 1-km domain were obtained from various 
databases and used for FDDA and model evaluation along with data for the 1-km domain. These 
data are stored on modeling computers and are available on request.   



 A-5 
 

 
Figure A1: Spatial distribution of meteorological monitoring sites in the 1-km modeling domain. 
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Figure A2: Spatial distribution of PM2.5 monitoring stations in the 1-km modeling domain. 
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Appendix B – Emissions Inventory 
 
This appendix provides additional details on the development of emissions estimates for resi-
dential wood combustion, an important PM2.5 source during winter pollution episodes. This 
appendix also contains additional summary tables and emissions density plots that characterize 
the emissions inventory used for the 2016 CMAQ modeling. 
   
B1. Residential Wood Combustion 
 
ARB emissions estimates for residential wood combustion are based on county-level popula-
tions of fireplaces and woodstoves, wood consumption rates by device type, and emission fac-
tors that represent the quantity of emissions per ton of fuel burned. Where possible, ARB esti-
mates device populations and wood consumption rates using local survey data, such as data 
collected as part of the District’s Spare the Air Tonight Study (BAAQMD, 2007). ARB residential 
wood combustion emissions estimates for the District were compared to internal estimates de-
rived from survey data, as well as estimates from neighboring air districts.  
 
Figure B1 shows annual average PM2.5 emissions from residential wood combustion for the two 
BAAQMD inventories, as well as inventories for the Sacramento Metropolitan Air Quality Man-
agement District (SMAQMD) and the San Joaquin Valley Unified Air Pollution Control District 
(SJVUAPCD). The internal BAAQMD inventory is somewhat higher than the ARB inventory for 
BAAQMD, and both BAAQMD inventories are significantly higher than emissions estimates for 
SMAQMD and SJVUAPCD. After additional investigations and discussions with ARB, it was deter-
mined that: 

• ARB’s PM2.5 emissions estimates for winter compared well with the District’s internal es-
timates; however, the District’s estimates for summer (which were extrapolated from 
winter survey results based on temperature data) are significantly higher than ARB’s es-
timates. These summer estimates do not appear to be realistic and result in the higher 
annual average PM2.5 emissions in the District’s internal inventory. 

• Higher residential wood combustion emissions estimates for BAAQMD relative to 
SMAQMD and SJVUAPCD likely result from a failure to account for the impact of the Dis-
trict’s Spare the Air Program. 

 
Based on these findings, it was decided that ARB’s residential wood combustion estimates for 
the District would be reduced by 50% as an initial estimate of the impact of the District’s Spare 
the Air program. Figure B2 shows the final monthly average PM2.5 emissions from residential 
wood combustion that were included in the CMAQ modeling inventories. Monthly average 
emissions range from 0.20 tpd in August to 8.39 tpd in January, with an annual average of 3.93 
tpd. 
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Figure B1: Comparison of 2016 annual average PM2.5 emissions inventories for residential wood combus-
tion. 

 

 
Figure B2: 2016 monthly average PM2.5 emissions for BAAQMD from residential wood combustion. 

 
B2. Emissions Inventory Summaries 
 
This section provides additional summary information on the emissions inventory used for the 

2016 CMAQ modeling. Tables B1 through B4 show emissions of PM2.5 precursors (TOG, NOx, 

SO2, and NH3) by geographic area and source sector. Key sources of TOG emissions include 
landfills, natural gas transmission losses, petroleum refining, and solvent usage. Key sources of 

NOx emissions include onroad and nonroad mobile sources, especially diesel-powered vehicles. 
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Key sources of SO2 emissions include petroleum refining and ocean-going vessels. Key sources 

of NH3 emissions include farming operations such as livestock waste and fertilizer application. 
 
Table B1: Summary of 2016 TOG emissions (tons/day) by geographic area and source sector. 

Geographic Area Area Nonroad Onroad Point Total 

Alameda 42.6 8.0 12.4 64.1 127.1 

Contra Costa 51.0 6.3 7.7 43.9 109.0 

Marin 16.2 2.9 2.5 15.2 36.8 

Napa 6.8 1.9 1.4 3.6 13.6 

San Francisco 18.1 6.2 2.9 3.0 30.2 

San Mateo 18.9 7.1 4.4 25.1 55.5 

Santa Clara 57.6 8.1 12.2 50.8 128.7 

Solano 14.3 2.1 2.6 8.7 27.7 

Sonoma 25.4 3.0 3.5 9.1 41.1 

BAAQMD Subtotal 251.0 45.6 49.6 223.4 569.6 

Non-BAAQMD Counties 502.5 22.7 29.0 80.9 635.1 

Domain Total 753.5 68.3 78.6 304.3 1,204.7 

 
Table B2: Summary of 2016 NOx emissions (tons/day) by geographic area and source sector. 

Geographic Area Area Nonroad Onroad Point Total 

Alameda 3.4 12.0 27.2 3.2 45.8 

Contra Costa 4.3 11.8 13.8 15.5 45.4 

Marin 0.9 3.8 3.6 0.3 8.5 

Napa 0.3 2.2 3.0 0.2 5.7 

San Francisco 2.1 34.4 4.5 1.4 42.4 

San Mateo 2.1 18.9 6.7 0.7 28.5 

Santa Clara 4.2 10.0 22.2 8.5 45.0 

Solano 1.0 3.9 5.4 3.8 14.1 

Sonoma 0.9 7.9 6.7 0.4 15.9 

BAAQMD Subtotal 19.3 104.8 93.0 34.0 251.2 

Non-BAAQMD Counties 19.0 37.3 60.5 4.2 121.1 

Domain Total 38.4 142.1 153.5 38.3 372.3 

 
Table B3: Summary of 2016 SO2 emissions (tons/day) by geographic area and source sector. 

Geographic Area Area Nonroad Onroad Point Total 

Alameda 0.1 0.4 0.2 1.4 2.0 

Contra Costa 0.1 0.9 0.1 16.6 17.7 

Marin 0.0 0.0 0.0 0.1 0.2 

Napa 0.0 0.0 0.0 0.0 0.0 

San Francisco 0.1 0.4 0.0 0.1 0.6 

San Mateo 0.1 0.9 0.1 0.1 1.1 

Santa Clara 0.1 0.1 0.2 2.9 3.3 

Solano 0.0 0.2 0.0 0.4 0.6 
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Sonoma 0.0 0.1 0.0 0.0 0.2 

BAAQMD Subtotal 0.5 3.1 0.7 21.6 25.9 

Non-BAAQMD Counties 1.6 0.3 0.4 1.9 4.2 

Domain Total 2.1 3.4 1.1 23.4 30.1 

 
Table B4: Summary of 2016 NH3 emissions (tons/day) by geographic area and source sector. 

Geographic Area Area Nonroad Onroad Point Total 

Alameda 3.0 0.0 1.5 0.4 4.9 

Contra Costa 3.1 0.0 0.9 2.1 6.1 

Marin 2.5 0.0 0.3 0.3 3.0 

Napa 0.5 0.0 0.2 0.1 0.8 

San Francisco 1.4 0.0 0.3 0.0 1.7 

San Mateo 1.3 0.0 0.5 0.2 2.1 

Santa Clara 3.6 0.0 1.6 1.5 6.7 

Solano 1.9 0.0 0.3 0.1 2.3 

Sonoma 3.3 0.0 0.4 0.3 4.0 

BAAQMD Subtotal 20.7 0.1 6.0 5.0 31.7 

Non-BAAQMD Counties 46.9 0.0 3.3 7.0 57.3 

Domain Total 67.6 0.1 9.3 12.0 89.0 

 
 
B3. Emissions Density Plots 
 
This section provides emissions density plots that show the spatial distribution of key PM2.5 pre-
cursors (an emissions density plot for primary PM2.5 is provided in the main body of this report 
in Figure 3.1). The emissions density plot for NOx (Figure B3) shows elevated emissions along 
major freeways and shipping lanes and in urban cores. Note that high emissions along shipping 
lanes in San Pablo Bay to the south of Marin County may be overestimated due to the spatial 
surrogate used for commercial marine vessel emissions, which does not include offshore ship-
ping lanes for Sonoma County. 
 
The emissions density plot for SO2 (Figure B4) shows the presence of point sources in the 1-km 
domain that emit this pollutant, as well as emissions from commercial marine vessels along 
shipping lanes. The emissions density plot for NH3 (Figure B5) shows elevated emissions in San 
Joaquin County in the eastern part of the modeling domain, an area with significant agricultural 
activity. 
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Figure B3: Spatial distribution of annual average NOx emissions for the 1-km modeling domain. 
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Figure B4: Spatial distribution of annual average SO2 emissions for the 1-km modeling domain. 
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Figure B5: Spatial distribution of annual average NH3 emissions for the 1-km modeling domain. 
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APPENDIX C – Meteorological Model Evaluation 
 
C1. Statistical Evaluation 
 

The ENVIRON METSTAT program (Emery et al., 2001) was used to compare the WRF-generated 
meteorological fields against hourly surface observations archived at NCAR. METSTAT is a 
statistical analysis software package that calculates and graphically presents statistics such as 
mean observation, mean simulation, bias error, gross error, and index of agreement.  
 
Hourly time series of observed and simulated surface-layer wind and temperature are 
presented to evaluate the model performance. Statistics are defined as follows: 
 
Mean observation (Mo): calculated from all sites with valid data within a given analysis region 
and for a given time period (hourly or daily): 

 

where 
i

jO  is the individual observed quantity at site i and time j, and the summations are over 

all sites (I) and time periods (J). 
 
Mean prediction (Mp): calculated from simulation results that are interpolated to each 
observation used to calculate the mean observation (hourly or daily): 

 

where 
i

jP  is the individual simulated quantity at site i and time j. Note that mean observed and 

simulated winds are vector-averaged (for east-west component u and north-south component 
v), from which the mean wind speed and mean resultant direction are derived.  
 
Bias error (B): calculated as the mean difference in prediction-observation pairings with valid 
data within a given analysis region and for a given time period (hourly or daily): 

 

Gross Error (E): calculated as the mean absolute difference in prediction-observation pairings 
with valid data within a given analysis region and for a given time period (hourly or daily): 
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Note that the bias and gross error for winds are calculated from the predicted-observed 
residuals in speed and direction (not from vector components u and v).  The direction error for 

a given prediction-observation pairing is limited to range from 0 to 180. 
 

Root Mean Square Error (RMSE):  calculated as the square root of the mean squared difference 
in prediction-observation pairings with valid data within a given analysis region and for a given 
time period (hourly or daily): 

 

The RMSE, as with the gross error, is a good overall measure of model performance. 
 
Index of Agreement (IOA): calculated following the approach of Willmont (1981).  This metric 
condenses all the differences between model estimates and observations within a given 
analysis region and for a given time period (hourly and daily) into one statistical quantity.  It is 
the ratio of the total RMSE to the sum of two differences – between each prediction and the 
observed mean, and each observation and the observed mean: 
 

 

Viewed from another perspective, the index of agreement is a measure of the match between 
the departure of each prediction from the observed mean and the departure of each 
observation from the observed mean.  Thus, the correspondence between predicted and 
observed values across the domain at a given time may be quantified in a single metric and 
displayed as a time series.  The index of agreement has a theoretical range of 0 to 1, the latter 
score suggesting perfect agreement. 

C2. Time Series Comparisons 

 
To further evaluate model performance and to understand the meteorology at specific regions 
of concern, the simulated results were compared to wind and temperature measurements from 
monitoring sites in West Oakland, San Jose and Vallejo. Figures C2 through C9 show time series 
comparing daily average WRF-simulated surface wind speed and temperature to observations 
at Oakland, San Jose and Vallejo for each quarter of 2016.  
 
The WRF-simulated wind and temperature matched the observed trends very well for the 
whole year of 2016. There were no significant differences between the predicted and the 
observed values. The best performance was observed at Vallejo site, especially for wind speed 
performance. Underestimations of wind speed were noticeable at Oakland and San Jose 
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throughout 2016. Investigations into this wind speed performance problem are on-going. 
 

 

Figure C1: Daily time series of observed and simulated wind speed at West Oakland for 2016 are 
displayed quarterly. Observation data from mid-August through mid-November were not available. 
“Mean OBS” is for all observations averaged over the 1-km domain. “Mean PRD” is for all prediction 
fields at the observation sites averaged over the 1-km domain.  
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Figure C2: Daily time series of observed and simulated wind direction at West Oakland for 2016. 
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Figure C3: Daily time series of observed and simulated temperatures at West Oakland for 2016. 
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Figure C4: Daily time series of observed and simulated wind speed at Vallejo for 2016. 
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Figure C5: Daily time series of observed and simulated wind direction at Vallejo for 2016. 
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Figure C6: Daily time series of observed and simulated temperatures at Vallejo for 2016. 
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Figure C7: Daily time series of observed and simulated wind speed at San Jose for 2016. 
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Figure C8: Daily time series of observed and simulated wind direction at San Jose for 2016. 
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Figure C9: Daily time series of observed and simulated temperatures at San Jose for 2016. 
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C3. Evaluating WRF Against Upper Air Measurements 
 
There were two upper air stations within the 1-km WRF modeling domain that were operating 
in 2016. One of them was in Oakland, where the National Weather Service made twice daily 
measurements at 00 GMT and 12 GMT (4:00 pm and 4:00 am PST, respectively) throughout the 
year. The other station was at Bodega Bay, where midday measurements were made from May 
through August, 2016. This was a temporary station established in support of the California 
Baseline Ozone Transport Study. 
 
Outputs from the 1-km WRF model were compared against measurements at both stations. 
Day by day, simulations matched observations exceptionally well. Figures C10 and C11 show 
simulated and observed upper air meteorological data from one winter day (January 10, 2016 
at 12 GMT) and from one summer day (June 4, 2016 at 12 GMT) at Oakland. Simulated 
temperature and dew point (dashed lines) follow observations (solid lines) very well. 
 
Figure C12 shows observed and simulated temperatures at 1:00 pm at Bodega Bay. The 
simulated temperature matches observations very well. 
 

These are randomly selected plots for the purpose of displaying observed vs. simulated 
meteorological parameters. They do not necessarily show the best or worst match between the 
simulation and observations.
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Figure C10: A skew-T plot showing simulated (dashed lines) and observed (solid lines) temperatures 
(orange and black) and humidity (blue) at Oakland on January 10, 2016 at 12 GMT. Observed wind barbs 
at pressure levels are shown on the right y-axis. 
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Figure C11: A skew-T plot showing simulated (dashed lines) and observed (solid lines) temperatures 
(orange and black) and humidity (blue) at Oakland on June 4, 2016 at 12 GMT. Observed wind barbs at 
pressure levels are shown on the right y-axis. 
  



 C-15 
 

  

Figure C12: A plot showing simulated (red) and observed (black) temperatures at Bodega Bay at 1:00 pm 
PST. 
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Appendix D – Evaluation of the CMAQ Model 
 
D1. Statistical Metrics 
 
Table D1 shows statistical metrics used for CMAQ evaluation. Statistical metrics were calculated 
from paired daily observed and simulated PM2.5 concentrations over quarterly and annual 
periods. Q1, Q2, Q3 and Q4 represent the 1st, 2nd, 3rd and 4th quarters, respectively. They are 
defined as January-March, April-June, July-September and October-December. 
 
Table D1. Quarterly and annual statistical model performance metrics. 

Metric Definition1 Q1 Q2 Q3 Q4 Annual 

Mean bias (MB, 

g/m3) 

1

𝑁
∑(𝑃𝑖 − 𝑂𝑖) 2.3 -0.3 -1.2 0.4 0.3 

Mean error (ME, 

g/m3) 

1

𝑁
∑|𝑃𝑖 − 𝑂𝑖| 3.6 2.7 2.9 3.6 3.2 

Root mean square 

error (RMSE, g/m3) 
√
1

𝑁
∑(𝑃𝑖 − 𝑂𝑖)2 5.5 3.4 3.7 5.3 4.6 

Fractional bias (FB, 
%) 

100 ×
2

𝑁
∑

𝑃𝑖 − 𝑂𝑖
𝑃𝑖 + 𝑂𝑖

 23% 5% -8% 4% 6% 

Fractional error (FE, 
%) 

100 ×
2

𝑁
∑

|𝑃𝑖 − 𝑂𝑖|

𝑃𝑖 + 𝑂𝑖
 40% 40% 43% 41% 41% 

Normalized mean 
bias (NMB, %) 

100 ×
∑(𝑃𝑖 −𝑂𝑖)

∑𝑂𝑖
 30% -4% -16% 4% 4% 

Normalized mean 
error (NME, %) 

100 ×
∑|𝑃𝑖 −𝑂𝑖|

∑𝑂𝑖
 47% 38% 39% 42% 42% 

Correlation coeffi-
cient (r) 

∑[(𝑃𝑖 − 𝑃)(𝑂𝑖 − 𝑂)]

√∑(𝑃𝑖 − 𝑃)
2
∑(𝑂𝑖 − 𝑂)

2
 0.69 0.35 0.32 0.61 0.56 

1 The summations are taken over all pairs of predictions (Pi) and valid observations (Oi) by site and day, and N is the 
total number of data pairs. Overbars represent means over the N data. 

 

The annual mean bias in simulated PM2.5 concentrations is 0.3 g/m3. On a quarter by quarter 

basis, the mean bias ranges from -0.3 to 2.3 g/m3. Among the quarters, Q1 has the highest 
bias. As explained in the main text, the model is significantly overestimating PM2.5 during winter 
months, especially in February. Possible reasons for the overestimation are under investigation.  
 
Overall, the model shows acceptable PM2.5 performance, meeting the goals by Boylan and 
Russell (2006) and criteria by Emery et al. (2017) for the whole year as well as all 4 quarters. 
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D2. West Oakland PM2.5 Composition 
 
Figure D1 shows annual and quarterly average PM2.5 compositions over the West Oakland 
receptor domain for the base and control (i.e., a simulation without West Oakland’s 
anthropogenic emissions) cases as well as the West Oakland contributions (i.e., the difference 
between the base and control cases). The “Other PM2.5” fractions (primary PM2.5 mass other 
than carbonaceous material and sea salt; mostly fugitive dust in this region) are generally the 
largest component except for the 3rd quarter, where sulfate is the dominant PM2.5 component. 
Secondary PM2.5 fractions (ammonium sulfate, ammonium nitrate, and secondary organic 
aerosol) account for approximately half of total PM2.5 mass (ranging from 41% to 63%). The 
base and control cases exhibit similar PM2.5 compositions, indicating that the regional 
background influence is dominating. The West Oakland contributions are heavily weighted by 
primary fractions (84% to 93%) from the local sources. 
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 (a) Annual Average PM2.5 Composition (West Oakland Receptor Region) 
                              Base Case                                                        Background Case                                      West Oakland Contribution 

 
(b) Quarter 1 Average PM2.5 Composition (West Oakland Receptor Region) 
                              Base Case                                                        Background Case                                      West Oakland Contribution 
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(c) Quarter 2 Average PM2.5 Composition (West Oakland Receptor Region) 
                              Base Case                                                        Background Case                                      West Oakland Contribution 

 
(d) Quarter 3 Average PM2.5 Composition (West Oakland Receptor Region) 
                              Base Case                                                        Background Case                                      West Oakland Contribution 
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(e) Quarter 4 Average PM2.5 Composition (West Oakland Receptor Region) 
                              Base Case                                                        Background Case                                      West Oakland Contribution 

 
Figure D1: Annual and quarterly average PM2.5 compositions over the West Oakland Receptor Region for the base and control cases and their 

differences (i.e., contributions from the West Oakland anthropogenic emissions). Numbers in the center are total PM2.5 concentrations in g/m3. 
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